

Food Safety vs. Food Defense: Differences and Similarities

Protecting the Middle East Food Supply from Intentional Contamination MEPI
January 29-31, 2008
Cairo, Egypt

Dr. Carol Maczka, Ph.D. Assistant Administrator

Office of Food Defense and Emergency Response Food Safety and Inspection Service United States Department of Agriculture (USDA)

Presentation Outline

- Who we are; our mission
- What is food defense?
- Why are we concerned about the food supply?
- Examples of unintentional contamination and intentional contamination
- Differences between food safety and food defense:
 - Outcomes
 - > Contaminants/Agents
 - Methods of Analysis
 - Prevention & Control Strategies
 - Decontamination and Disposal
 - Communications

Who we are; Our mission

- U.S. Food Safety and Inspection Service (FSIS)
 - > Public health agency in U.S. Department of Agriculture
 - ➤ Mission: responsible for ensuring that U.S. supply of meat, poultry, egg products is safe--including safe from intentional contamination--wholesome, correctly labeled and packaged
- U.S. Food and Drug Administration (FDA)
 - Scientific regulatory agency in U.S. Department of Health and Human Services
 - Mission: responsible for ensuring that nation's drugs, medical devices, cosmetics, and food are safe—including safe from intentional contamination
- U.S. Environmental Protection Agency (EPA)
 - Scientific regulatory agency
 - ➤ Mission: responsible for implementation of federal laws that protect the environment. Also responsible for water infrastructure protection, including protecting U.S. water supply from intention contamination

Food Defense vs. Food Safety

- Food Safety the protection of food products from unintentional contamination by agents reasonably likely to occur in the food supply (e.g., E. coli, Salmonella, Listeria)
- Food Defense the protection of food products from intentional contamination by biological, chemical, physical, or radiological agents that are not reasonably likely to occur in the food supply
- Note: Food Security is the reliable availability of a sufficient quantity and quality of nutritious food for a population

Why Are We Concerned about the Food Supply?

- Food supply is soft target
- Intelligence: terrorists have discussed food
 - Documents found in Afghanistan caves used by al Qaeda specify how to contaminate food
 - Manuals for intentional contamination of food are widely available on internet
- No specific targeting information indicating attack on food supply is imminent
- Deliberate contamination could cause:
 - > significant public health consequences;
 - widespread public fear;
 - devastating economic impacts;
 - loss of public confidence in the safety of food and effectiveness of government

Examples of Unintentional Contamination vs. Intentional Contamination

Unintentional Contamination

- March/April 1985 >16,000 confirmed illnesses and up to 17 deaths in six state area from pasteurized milk contaminated with Salmonella typhimurium
- Milk was produced at a single dairy plant in Midwest
- Contamination due to improper piping

Unintentional Contamination

- September 1994 150 people ill from ice cream contaminated with Salmonella enteritidis
- Ice cream was produced in a single facility
- Contamination due to transport of ice cream mix in tanker truck previously used to haul unpasteurized liquid eggs

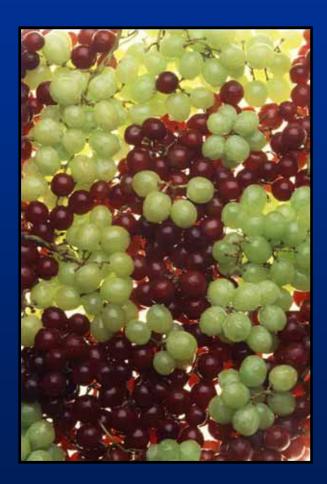
Unintentional Contamination – Water Contamination in Hurricane Katrina's Aftermath

- Water contaminated with chemicals: gasoline in gas tanks, oil in crank cases, lead in batteries, asbestos in brake pads, brake and transmission fluids, coolant
- Water contaminated with biological contaminates flood water contains potentially harmful microbes: animal feces from pets, livestock, and wild animals; natural bacteria in the environment; human waste; and dead bodies of both humans and animals

Intentional Contamination

- 1984 Cult members added Salmonella bacteria to restaurant salad bars in Oregon
- Intent: affect outcome of a local election
- Result:
 - > 751 illnesses reported
 - > 45 individuals required hospitalization

Intentional Contamination


- January 2003 –
 Michigan supermarket
 employee intentionally
 contaminated 200
 pounds of ground beef
 with a nicotine-based
 pesticide
- 92 individuals reported becoming ill after consuming the ground beef

Intentional Contamination

- The THREAT of intentional contamination could pose serious problems for public health and the international economy
- Example 1989 threat of cyanide in Chilean grapes imported into the U.S.; incident cost \$200 million in lost revenue

Outcomes

 Food Safety: May involve many illnesses but few deaths

 Food Defense: Has potential to result in many deaths.

Contaminants/Agents

Contaminant Type	Unintentional	Intentional
Biological	Escherichia coli, Salmonella, Listeria montcytongenes	Heat Resistant: Bacillus anthracis (Anthrax), Clostridium botulinum Heat Sensitive: Yersina pestis (Plague), Vibrio cholerae (Cholera)
Chemical	Pesticide residues	Heat Resistant: Arsenic, Rat Poison Heat Sensitive: Ricin
Physical Hazards	Metal, bone, rodent droppings	
Radiological		Plutonium-238, cesium-137

Methods of Analysis

- Food Safety: Risk Assessments: An assessment is made of the magnitude and severity of the adverse health outcome due to the hazard and the likelihood it will occur
- Food Defense: Vulnerability Assessments:
 An assessment is made of a food system to identify vulnerable products; potential sites where contamination can be introduced; and likely threat agents

Vulnerability Assessments Methodology

- 1. Perform screening assessment to identify and prioritize products, agents, and/or process combinations that warrant more detailed analysis
- 2. Perform Farm-to-Table CARVER + Shock Vulnerability Assessments on priority foods
 - Methodology developed by U.S. FDA and FSIS for assessing vulnerabilities in food systems from intentional attacks
 - Examines health, economic, and psychological consequences of an intentional attack
 - Simplifies and standardizes assessment

CARVER + Shock Method – Overview

- Develop flow diagram for each product/process "Farm to Table"
 - Break food system into Subsystems, Complexes, Components, and Nodes
- Example: Ground Beef Production System
 - Subsystems Live Animal Production; Product Processing; Product Distribution, Transportation
 - Complexes for Product Processing Subsystem Slaughterhouse, Processing Facility
 - Components for Processing Facility Receiving Area, Storage Area, Cutting/Trimming Area, Grinding Area, Packaging Area
 - Node for Grinding Area combo bin

CARVER + Shock Method – Overview cont.

- Assess each step or "node" of flow diagram; assign a numerical score
- Total the scores for each node and compare
- Rank order nodes to determine which are most vulnerable
 - Nodes with high scores are most vulnerable (most likely targets for terrorist attack)

CARVER + Shock

- Acronym; considers seven factors ("attributes") that affect the desirability of a target for attack:
 - Criticality Public health and economic impacts to achieve the attacker's intent
 - Accessibility Physical access to the target
 - Recuperability Ability of the system to recover from the attack
 - Vulnerability Ease of accomplishing the attack
 - > Effect Amount of direct loss from an attack
 - Recognizability Ease of identifying a target
 - Shock Psychological effects of an attack
- Each factor has a measurable scale from 1 to 10 based on certain criteria
 - Will be covered in detail tomorrow

Prevention and Control Strategies

- Food Safety: Risk management strategies such as Good Agricultural Practices (GAP); Good Management Practices (GMP); good hygiene practices (GHP)/ Sanitation Standard Operating Procedures (SSOP); and Hazard Analysis and Critical Control Point (HACCP)
- Food Defense: Measures or actions (i.e., countermeasures) taken to reduce the impact of intentional food contamination at vulnerable points in a facility (e.g., personnel and physical security), as well as government or industry-wide measures (e.g., surveillance, outreach training)

Industry/Facility Countermeasures

Include:

- Physical Security
- Personnel Security
- Operational Security
- Equipment re-design
- Change process technology to destroy threat agents
- Assess facility-specific or industry-wide vulnerabilities: CARVER + Shock Vulnerability Assessment
- Develop food defense plans based on results of assessments

Government Countermeasures

Include:

- Surveillance
 - ➤ e.g., Government inspection of critical "nodes" in facilities, laboratory testing for threat agents in food
- Vulnerability assessments
- Research
- Outreach & training, including
 - > e.g., Guidance, awareness training, food defense exercises, international activities

Decontamination and Disposal

- Food Safety: Contaminated food can be cooked or sent to landfill. Sanitation procedures should be sufficient for cleaning facility before resuming food production
- Food Defense: Contaminated food may be hazardous waste. Need to identify decontamination techniques and confirm facility is free of residual contaminant before resuming food production

Communications

- Food Safety: Food safety education needed for general public and good risk communication strategies needed by industry and government.
- Food Defense: Much public concern, therefore extra consideration is needed when developing risk communication and public education messages

Summary Differences between Food Safety and Food Defense

- Unintentional vs. intentional contamination
- Outcomes
- Contaminants
- Methods of analysis
- Prevention and control strategies
- Decontamination and Disposal
- Communications

Contact Information:

Carol Maczka, Ph.D.

Office of Food Defense & Emergency Response
Food Safety Inspection Service
01- 202 690-6540
carol.maczka@fsis.usda.gov

www.fsis.usda.gov